tástáil bhunaithe leabhair «Spiral
Dynamics: Mastering Values, Leadership,
and Change» (ISBN-13: 978-1405133562)
Urraitheoirí

AI Assistants Boost Beginners More Than Experts, Study Shows Correlation

There once was an AI named Chat who was really good at repeating back information it already knew. One day, Chat was given to some office workers [1] to help them with their jobs. Some of the workers were experts at their jobs, while others were still learning.  


At first, Chat helped all the workers get more work done faster - even the experts! But soon, the experts noticed something funny. The workers who were still learning got way MORE help from Chat. The new workers improved a lot using Chat, doing their work faster and better than ever before!   


The experts wondered why Chat didn't help them as much. That's when they realized - that Chat is an expert at repeating back facts but can't come up with brand new ideas. So, for workers who already knew those facts, Chat didn't offer them that much new help. But for newer workers still learning those basics, Chat was able to teach them so much more!


This shows a correlation - as in, two things that relate to each other and change together. The more expert a worker already was, the less helpful Chat was for them. But for newer workers, Chat could help them almost as much as the experts! It's because of their different starting points. Chat has a limit to how expert it can be. So, the closer a worker already was to Chat's expertise, the less new stuff Chat offered them.


The experts and newbies improved at different rates thanks to Chat. Their own expertise compared to Chat's matters for how much more they can learn. That connection in how much they improve is the correlation!


The SDTEST® gives clues to someone's motivational values. However, additional polls can provide more pieces of the puzzle.


Imagine also giving an "A.I. and the end of civilization" poll. It asks people to rate at the agree or disagree level. 


Now imagine 100 people who took both tests. You could match up each person's SDTEST® colors with their rated answers about the danger of AI.


Comparing tests gives an expanded picture of values in action. More puzzle pieces make the whole image more apparent!


Multiple tests can work together, like colors blending on a palette. Other polls reveal what engages your values, like what is the perception of the danger of AI. Combined, they paint a richer picture of what motivates our thoughts and deeds.


Below you can read an abridged version of the results of our VUCA poll “A.I. and the end of civilization“. The full results of the poll are available for free in the FAQ section after login or registration.


Faisnéis shaorga agus deireadh na sibhialtachta

ChartsComhghaoil
?
Seo an gaol idir freagraí na vótaíochta agus na dathanna tástála dinimic bíseach
VUCA
?
Seo léargas nua comhéadain ar chomhghaol i dtábla de réir leibhéil dinimic bíseach ina dtaispeántar luaineacht, neamhchinnteacht, castacht, agus débhríocht (V.U.C.A.) trí spleáchais chomhghaoil ​​dhearfacha agus dhiúltacha idir freagraí na vótaíochta agus na dathanna dinimic bíseach
Tír
Teanga
-
Mail
Athchúrsáil
Luach criticiúil an chomhéifeacht comhghaoil
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.0718
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.0718
Dáileadh Neamh -Ghnáth, le Spearman r = 0.0029
ImdháileadhNeamhghnáchGnáth-NeamhghnáchGnáth-Gnáth-Gnáth-Gnáth-Gnáth-
Gach ceist
Gach ceist
1) Sábháilteacht (cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
2) Rialú (Cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
1) Sábháilteacht (cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
Answer 1-
Dearfach lag
0.0708
Dearfach lag
0.0197
Dearfach lag
0.0942
Diúltach lag
-0.1158
Dearfach lag
0.0007
Diúltach lag
-0.0461
Dearfach lag
0.0163
Answer 2-
Dearfach lag
0.0170
Diúltach lag
-0.0075
Dearfach lag
0.0441
Diúltach lag
-0.0223
Dearfach lag
0.0348
Dearfach lag
0.0017
Diúltach lag
-0.0533
Answer 2-
Diúltach lag
-0.0306
Diúltach lag
-0.0288
Dearfach lag
0.0092
Dearfach lag
0.0596
Diúltach lag
-0.0264
Diúltach lag
-0.0113
Dearfach lag
0.0030
Answer 3-
Dearfach lag
0.0348
Diúltach lag
-0.0106
Dearfach lag
0.0164
Diúltach lag
-0.0570
Diúltach lag
-0.0332
Dearfach lag
0.0046
Dearfach lag
0.0562
Answer 4-
Diúltach lag
-0.0137
Diúltach lag
-0.0241
Diúltach lag
-0.0239
Dearfach lag
0.0438
Dearfach lag
0.0320
Dearfach lag
0.0227
Diúltach lag
-0.0554
Answer 5-
Diúltach lag
-0.0138
Diúltach lag
-0.0526
Diúltach lag
-0.0740
Dearfach lag
0.0650
Diúltach lag
-0.0071
Dearfach lag
0.0438
Dearfach lag
0.0148
Answer 6-
Diúltach lag
-0.0554
Dearfach lag
0.1068
Diúltach lag
-0.0652
Dearfach lag
0.0149
Dearfach lag
0.0042
Diúltach lag
-0.0171
Dearfach lag
0.0168
2) Rialú (Cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
Answer 7-
Dearfach lag
0.0123
Dearfach lag
0.0023
Dearfach lag
0.0772
Dearfach lag
0.0566
Diúltach lag
-0.0241
Diúltach lag
-0.0754
Diúltach lag
-0.0436
Answer 8-
Dearfach lag
0.0168
Diúltach lag
-0.0315
Diúltach lag
-0.0355
Dearfach lag
0.0207
Dearfach lag
0.0870
Diúltach lag
-0.0030
Diúltach lag
-0.0551
Answer 8-
Dearfach lag
0.0171
Diúltach lag
-0.0270
Diúltach lag
-0.0694
Diúltach lag
-0.0079
Diúltach lag
-0.0035
Dearfach lag
0.0573
Dearfach lag
0.0309
Answer 9-
Dearfach lag
0.0181
Dearfach lag
0.0007
Dearfach lag
0.0309
Diúltach lag
-0.0588
Diúltach lag
-0.0310
Diúltach lag
-0.0125
Dearfach lag
0.0558
Answer 10-
Diúltach lag
-0.0034
Dearfach lag
0.0263
Dearfach lag
0.0655
Dearfach lag
0.0322
Diúltach lag
-0.0684
Diúltach lag
-0.0152
Diúltach lag
-0.0352
Answer 11-
Diúltach lag
-0.0909
Diúltach lag
-0.0336
Diúltach lag
-0.0184
Dearfach lag
0.0087
Dearfach lag
0.0272
Dearfach lag
0.0750
Diúltach lag
-0.0014
Answer 12-
Dearfach lag
0.0041
Dearfach lag
0.0892
Diúltach lag
-0.0341
Diúltach lag
-0.0676
Diúltach lag
-0.0262
Diúltach lag
-0.0098
Dearfach lag
0.0683


Easpórtáil go MS Excel
Beidh an fheidhmiúlacht seo ar fáil i do vótaíochtaí VUCA féin
Go maith



[1] https://www.ft.com/content/b2928076-5c52-43e9-8872-08fda2aa2fcf


2023.11.27
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
Úinéir Táirge SaaS SDTEST®

Cáilíodh Valerii mar oideolaí-síceolaí sóisialta i 1993 agus tá a chuid eolais i mbainistíocht tionscadal curtha i bhfeidhm aige ó shin.
Ghnóthaigh Valerii céim Mháistreachta agus cáilíocht an bhainisteora tionscadail agus clár in 2013. Le linn a chláir Mháistreachta, chuir sé aithne ar Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) agus Spiral Dynamics.
Is é Valerii an t-údar a rinne iniúchadh ar éiginnteacht an V.U.C.A. coincheap ag baint úsáide as Dinimic Bíseach agus staitisticí matamaitice sa tsíceolaíocht, agus 38 vótaíocht idirnáisiúnta.
Tá an post seo 0 Deir
Freagra ar
Cealaigh freagra
Fág do thrácht
×
LEAT AN ERROR
Mholadh DO LEAGAN CEART
Cuir isteach do sheoladh r-phoist mar atá ag teastáil
Seol
Cealaigh
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Dia Duit! Lig dom ceist a chur ort, an bhfuil tú eolach cheana féin ar dhinimic bíseach?